[모두를 위한 딥러닝 시즌2] Lab-10-6-1 Advanced CNN(RESNET)1
[모두를 위한 딥러닝 시즌2] Lab-10-6-1 Advanced CNN(RESNET)1
torchvision.models.resnet 구현
ResNet은 크게 두 가지 블록 타입을 사용
- BasicBlock: ResNet-18, ResNet-34에 사용
- Bottleneck Block: ResNet-50, ResNet-101, ResNet-152에 사용
가장 간단하고 성능이 좋은 모델 (a)를 만들어 보자
Conv
1
2
3
4
5
6
7
8
# 3x3 컨볼루션 레이어 정의 (입력 공간 정보를 효과적으로 캡처)
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
# 1x1 컨볼루션 레이어 정의 (채널 축소 또는 확장 용도)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
BasicBlock
- 두 개의 3x3 컨볼루션 레이어와 Batch Normalization, ReLU 활성화 함수로 구성
- 입력과 출력을 더해주는 skip connection
- stride가 2일 때 다운샘플링을 적용하여 입력의 크기를 줄인다
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class BasicBlock(nn.Module):
expansion = 1 # 출력 채널 확장 비율
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride) # 첫 번째 3x3 컨볼루션
self.bn1 = nn.BatchNorm2d(planes) # 배치 정규화
self.relu = nn.ReLU(inplace=True) # ReLU 활성화 함수
self.conv2 = conv3x3(planes, planes) # 두 번째 3x3 컨볼루션
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample # 다운샘플링 레이어
self.stride = stride
def forward(self, x):
identity = x # 입력을 identity로 저장
out = self.conv1(x) # 첫 번째 컨볼루션 연산
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out) # 두 번째 컨볼루션 연산
out = self.bn2(out)
if self.downsample is not None: # 다운샘플링이 필요한 경우 수행
identity = self.downsample(x)
out += identity # skip connection (잔여 연결)
out = self.relu(out)
return out
Bottlenect Block
- 1x1, 3x3, 1x1 컨볼루션 레이어로 구성
- expansion이 4로 설정되어 출력 채널 크기를 4배로 증가
- 다운샘플링을 위해 stride가 적용된 별도의 레이어를 포함
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Bottleneck(nn.Module):
expansion = 4 # 출력 채널 확장 비율
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes) # 1x1 컨볼루션 (축소)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride) # 3x3 컨볼루션
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion) # 1x1 컨볼루션 (확장)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample # 다운샘플링 레이어
self.stride = stride
def forward(self, x):
identity = x # 입력을 identity로 저장
out = self.conv1(x) # 첫 번째 컨볼루션
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out) # 두 번째 컨볼루션
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out) # 세 번째 컨볼루션
out = self.bn3(out)
if self.downsample is not None: # 다운샘플링이 필요한 경우 수행
identity = self.downsample(x)
out += identity # skip connection (잔여 연결)
out = self.relu(out)
return out
ResNet 구현
- 입력 데이터가 3x224x224 크기를 가지는 이미지를 처리하도록 설계되어있다
- 만약 입력 크기가 다르다면, 초기 컨볼루션과 다운샘플링 단계를 적절히 수정해야 함
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ResNet(nn.Module):
# ResNet 모델 생성 (예: ResNet50의 경우 Bottleneck과 [3, 4, 6, 3] 레이어 구성 사용)
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64 # 입력 채널 크기
# 초기 컨볼루션 레이어
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 네트워크의 각 레이어 생성
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# 평균 풀링 및 완전 연결층
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# 파라미터 초기화
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero Initialization: Identity Mapping을 강화하기 위한 설정
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
# ResNet의 레이어를 구성하는 함수
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
# stride가 1이 아니거나, 입력과 출력 채널 수가 다른 경우 다운샘플링 필요
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride), # 1x1 컨볼루션
nn.BatchNorm2d(planes * block.expansion), # 배치 정규화
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample)) # 첫 번째 블록
self.inplanes = planes * block.expansion # 입력 채널 갱신
for _ in range(1, blocks): # 나머지 블록 추가
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
# 순전파 정의
def forward(self, x):
x = self.conv1(x) # 초기 컨볼루션
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x) # 첫 번째 레이어
x = self.layer2(x) # 두 번째 레이어
x = self.layer3(x) # 세 번째 레이어
x = self.layer4(x) # 네 번째 레이어
x = self.avgpool(x) # 평균 풀링
x = x.view(x.size(0), -1) # 텐서를 1차원으로 변환
x = self.fc(x) # 완전 연결층
return x
ResNet 모델 생성
1
2
3
4
5
6
7
8
9
10
11
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) #=> 2*(2+2+2+2) +1(conv1) +1(fc) = 16 +2 =resnet 18
return model
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) #=> 3*(3+4+6+3) +(conv1) +1(fc) = 48 +2 = 50
return model
def resnet152(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) # 3*(3+8+36+3) +2 = 150+2 = resnet152
return model
다운샘플링 메커니즘
ResNet에서 다운샘플링은 주로 두 가지 방식으로 처리됨
- 컨볼루션 스트라이드: 컨볼루션 레이어의 스트라이드를 2로 설정하여 피처 맵 크기 감소
- 1x1 컨볼루션: 입력 텐서의 채널 수와 크기를 조정하는 데 사용
주요 구현 팁
1. 채널 확장
- BasicBlock:
expansion = 1
- Bottleneck:
expansion = 4
2. 파라미터 초기화
- Kaiming 초기화 사용
- 마지막 배치 정규화 레이어 가중치를 0으로 초기화 가능
3. 글로벌 평균 풀링
모델 마지막에 AdaptiveAvgPool2d
를 사용하여 가변 입력 크기 지원
입력 크기 변경에 대한 대응
고려사항
- 기본 모델은 3x224x224 입력 기준
- 다른 입력 크기에 대해서는
_make_layer
메서드의 스트라이드 및 패딩 조정 필요
전체 코드
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152']
# 모델의 사전 학습된 가중치를 다운로드할 수 있는 URL
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
# 3x3 컨볼루션 레이어 정의
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 컨볼루션, 패딩 포함"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
# 1x1 컨볼루션 레이어 정의
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 컨볼루션"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
# BasicBlock 클래스 정의 (ResNet18 및 ResNet34에서 사용)
class BasicBlock(nn.Module):
expansion = 1 # 출력 채널 확장 비율
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride) # 첫 번째 3x3 컨볼루션
self.bn1 = nn.BatchNorm2d(planes) # 배치 정규화
self.relu = nn.ReLU(inplace=True) # ReLU 활성화 함수
self.conv2 = conv3x3(planes, planes) # 두 번째 3x3 컨볼루션
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample # 다운샘플링 레이어
self.stride = stride
def forward(self, x):
identity = x # 입력을 identity로 저장
out = self.conv1(x) # 첫 번째 컨볼루션 연산
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out) # 두 번째 컨볼루션 연산
out = self.bn2(out)
if self.downsample is not None: # 다운샘플링이 필요한 경우 수행
identity = self.downsample(x)
out += identity # skip connection (잔여 연결)
out = self.relu(out)
return out
# Bottleneck 클래스 정의 (ResNet50, ResNet101, ResNet152에서 사용)
class Bottleneck(nn.Module):
expansion = 4 # 출력 채널 확장 비율
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes) # 1x1 컨볼루션 (축소)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride) # 3x3 컨볼루션
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion) # 1x1 컨볼루션 (확장)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample # 다운샘플링 레이어
self.stride = stride
def forward(self, x):
identity = x # 입력을 identity로 저장
out = self.conv1(x) # 첫 번째 컨볼루션
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out) # 두 번째 컨볼루션
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out) # 세 번째 컨볼루션
out = self.bn3(out)
if self.downsample is not None: # 다운샘플링이 필요한 경우 수행
identity = self.downsample(x)
out += identity # skip connection (잔여 연결)
out = self.relu(out)
return out
# ResNet 클래스 정의
class ResNet(nn.Module):
# ResNet 모델 생성 (예: ResNet50의 경우 Bottleneck과 [3, 4, 6, 3] 레이어 구성 사용)
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64 # 입력 채널 크기
# 초기 컨볼루션 레이어
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 네트워크의 각 레이어 생성
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# 평균 풀링 및 완전 연결층
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# 파라미터 초기화
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Residual Block의 마지막 배치 정규화 계수를 0으로 초기화
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
# ResNet의 레이어를 구성하는 함수
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
# stride가 1이 아니거나, 입력과 출력 채널 수가 다른 경우 다운샘플링 필요
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride), # 1x1 컨볼루션
nn.BatchNorm2d(planes * block.expansion), # 배치 정규화
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample)) # 첫 번째 블록
self.inplanes = planes * block.expansion # 입력 채널 갱신
for _ in range(1, blocks): # 나머지 블록 추가
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
# 순전파 정의
def forward(self, x):
x = self.conv1(x) # 초기 컨볼루션
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x) # 첫 번째 레이어
x = self.layer2(x) # 두 번째 레이어
x = self.layer3(x) # 세 번째 레이어
x = self.layer4(x) # 네 번째 레이어
x = self.avgpool(x) # 평균 풀링
x = x.view(x.size(0), -1) # 텐서를 1차원으로 변환
x = self.fc(x) # 완전 연결층
return x
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) #=> 2*(2+2+2+2) +1(conv1) +1(fc) = 16 +2 =resnet 18
return model
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) #=> 3*(3+4+6+3) +(conv1) +1(fc) = 48 +2 = 50
return model
def resnet152(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) # 3*(3+8+36+3) +2 = 150+2 = resnet152
return model
# 직접 만든 ResNet50 모델을 생성
model = resnet50(pretrained=False) # pretrained=False로 설정하여 사전 학습 가중치 사용 안 함
print(model)
# ResNet(
# (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
# (layer1): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer2): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (3): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer3): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (3): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (4): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (5): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer4): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
# (fc): Linear(in_features=2048, out_features=1000, bias=True)
# )
# torchvision의 ResNet50 호출 및 출력
import torchvision.models.resnet as resnet
res = resnet.resnet50()
print(res)
# ResNet(
# (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
# (layer1): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer2): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (3): Bottleneck(
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer3): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (3): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (4): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (5): Bottleneck(
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (layer4): Sequential(
# (0): Bottleneck(
# (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# (downsample): Sequential(
# (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
# (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# )
# )
# (1): Bottleneck(
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# (2): Bottleneck(
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (relu): ReLU(inplace=True)
# )
# )
# (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
# (fc): Linear(in_features=2048, out_features=1000, bias=True)
# )
This post is licensed under CC BY 4.0 by the author.