Post

[모두를 위한 딥러닝 시즌2] Lab-10-6-2 Advanced CNN(RESNET)2

[모두를 위한 딥러닝 시즌2] Lab-10-6-2 Advanced CNN(RESNET)2

특징

  • ResNet50 기반의 커스텀 모델 구현
  • CIFAR-10 데이터셋 사용
  • 데이터 전처리 및 정규화 기법 적용
  • Visdom을 통한 학습 과정 시각화
  • 모델 성능 평가 및 체크포인트 저장

코드 설명

필요한 라이브러리 및 환경 설정

  • PyTorch 및 torchvision을 사용해 데이터 로드와 모델 구성
  • Visdom으로 학습 과정을 시각화
1
2
3
4
5
6
7
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import visdom
import torchvision.models.resnet as resnet

Visdom 초기화

  • Visdom 환경 초기화 및 시각화를 위한 준비
1
2
3
vis = visdom.Visdom()
vis.close(env="main")

Value Tracker 정의

  • 손실(loss) 및 정확도(accuracy)를 Visdom에 실시간으로 시각화
1
2
3
4
5
6
def value_tracker(value_plot, value, num):
    vis.line(X=num,
             Y=value,
             win=value_plot,
             update='append')

장치 설정 및 시드 초기화

  • 훈련이 GPU에서 실행되도록 설정
  • 재현성을 위한 랜덤 시드 고정
1
2
3
4
5
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(777)
if device == 'cuda':
    torch.cuda.manual_seed_all(777)


데이터 전처리

Normalize 계산

  • CIFAR-10 데이터의 각 채널 평균과 표준 편차를 계산하여 Normalize 값 설정
1
2
3
4
5
transform = transforms.Compose([transforms.ToTensor()])
trainset = torchvision.datasets.CIFAR10(root='./cifar10', train=True, download=True, transform=transform)
train_data_mean = trainset.data.mean(axis=(0, 1, 2)) / 255
train_data_std = trainset.data.std(axis=(0, 1, 2)) / 255

Random Crop 및 Normalize 적용

  • RandomCrop으로 데이터 다양성 증가, Normalize로 데이터 정규화
1
2
3
4
5
6
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.ToTensor(),
    transforms.Normalize(train_data_mean, train_data_std)
])


모델 구성

ResNet 정의

  • ResNet은 PyTorch ResNet 구조를 참고하여 CIFAR-10 크기에 맞춰 설계
  • 첫 번째 레이어에서 채널 수를 16으로 설정하고, 3x3 컨볼루션을 사용
1
2
3
4
5
6
7
8
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
        ...
    def _make_layer(self, block, planes, blocks, stride=1):
        ...
    def forward(self, x):
        ...

모델 생성

  • ResNet-50 생성 및 GPU에 업로드
1
2
resnet50 = ResNet(resnet.Bottleneck, [3, 4, 6, 3], 10, True).to(device)


모델 학습

손실 및 옵티마이저 설정

  • 크로스엔트로피 손실 함수, SGD 옵티마이저, 학습률 스케줄러 설정
1
2
3
4
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(resnet50.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
lr_sche = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

학습 루프

  • 배치 단위로 데이터를 모델에 입력, 손실 계산 및 역전파
  • lr_scheduler.step()을 통해 학습률 조정
1
2
3
4
5
6
7
8
9
10
11
12
13
14
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = resnet50(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    lr_sche.step()
    acc = acc_check(resnet50, testloader, epoch, save=1)
    value_tracker(acc_plt, torch.Tensor([acc]), torch.Tensor([epoch]))

정확도 체크 및 모델 저장

  • 모델 정확도 계산 및 torch.save()로 모델 가중치 저장
1
2
3
4
5
6
7
8
9
10
11
12
13
14
def acc_check(net, test_set, epoch, save=1):
    correct, total = 0, 0
    with torch.no_grad():
        for data in test_set:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    acc = 100 * correct / total
    torch.save(net.state_dict(), f"./model/model_epoch_{epoch}_acc_{int(acc)}.pth")
    return acc

학습 결과

  • 30 epoch부터 변화가 미미하여 중단하였음

Visdom

image.png

image.png

Model Save

image.png

전체코드

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# 필요한 라이브러리 임포트
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import visdom
import torchvision.models.resnet as resnet

# Visdom 초기화
vis = visdom.Visdom()
vis.close(env="main")

# Value Tracker 함수 정의
def value_tracker(value_plot, value, num):
    '''num, loss_value are Tensors'''
    vis.line(X=num,
             Y=value,
             win=value_plot,
             update='append')

# 장치 설정
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print (f"device is {device}")

# 랜덤 시드 설정
torch.manual_seed(777)
if device == 'cuda':
    torch.cuda.manual_seed_all(777)

# 데이터셋 전처리 및 정규화
transform = transforms.Compose([
    transforms.ToTensor()
])

# CIFAR10 데이터셋 로드 및 평균/표준편차 계산
trainset = torchvision.datasets.CIFAR10(root='./cifar10', train=True, download=True, transform=transform)
train_data_mean = trainset.data.mean(axis=(0, 1, 2)) / 255
train_data_std = trainset.data.std(axis=(0, 1, 2)) / 255

# 데이터셋 변환 설정
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.ToTensor(),
    transforms.Normalize(train_data_mean, train_data_std)
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(train_data_mean, train_data_std)
])

# 데이터셋 준비
trainset = torchvision.datasets.CIFAR10(root='./cifar10', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True, num_workers=0)

testset = torchvision.datasets.CIFAR10(root='./cifar10', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=256, shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# ResNet 모델 정의
conv1x1 = resnet.conv1x1
Bottleneck = resnet.Bottleneck
BasicBlock = resnet.BasicBlock

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
        super(ResNet, self).__init__()
        self.inplanes = 16
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        
        self.layer1 = self._make_layer(block, 16, layers[0], stride=1)
        self.layer2 = self._make_layer(block, 32, layers[1], stride=1)
        self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 128, layers[3], stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(128 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = [block(self.inplanes, planes, stride, downsample)]
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

# ResNet50 모델 생성
resnet50 = ResNet(Bottleneck, [3, 4, 6, 3], 10, True).to(device)

# 학습 준비
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(resnet50.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
lr_sche = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

# Loss 및 Accuracy 플롯 초기화
loss_plt = vis.line(Y=torch.Tensor(1).zero_(), opts=dict(title='Loss Tracker', legend=['Loss'], showlegend=True))
acc_plt = vis.line(Y=torch.Tensor(1).zero_(), opts=dict(title='Accuracy', legend=['Accuracy'], showlegend=True))

# Accuracy 체크 함수 정의
def acc_check(net, test_set, epoch, save=1):
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_set:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    acc = 100 * correct / total
    print(f'Accuracy of the network on the 10000 test images: {acc:.2f}%')
    if save:
        torch.save(net.state_dict(), f"./model/model_epoch_{epoch}_acc_{int(acc)}.pth")
    return acc

# 모델 학습
epochs = 150
for epoch in range(epochs):
    running_loss = 0.0
    # lr_sche.step()
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()
        outputs = resnet50(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 30 == 29:
            value_tracker(loss_plt, torch.Tensor([running_loss / 30]), torch.Tensor([i + epoch * len(trainloader)]))
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 30:.3f}')
            running_loss = 0.0

    lr_sche.step()
    acc = acc_check(resnet50, testloader, epoch, save=1)
    value_tracker(acc_plt, torch.Tensor([acc]), torch.Tensor([epoch]))

print('Finished Training')

# 최종 모델 평가
correct = 0
total = 0

with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = resnet50(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')
# [1, 30] loss: 2.039
# [1, 60] loss: 1.885
# [1, 90] loss: 1.775
# [1, 120] loss: 1.753
# [1, 150] loss: 1.670
# [1, 180] loss: 1.609
# Accuracy of the network on the 10000 test images: 40.86%
# [2, 30] loss: 1.527
# [2, 60] loss: 1.472
# [2, 90] loss: 1.439
# [2, 120] loss: 1.368
# [2, 150] loss: 1.341
# [2, 180] loss: 1.268
# Accuracy of the network on the 10000 test images: 47.97%
# ...
# [28, 30] loss: 0.153
# [28, 60] loss: 0.154
# [28, 90] loss: 0.159
# [28, 120] loss: 0.160
# [28, 150] loss: 0.176
# [28, 180] loss: 0.178
# Accuracy of the network on the 10000 test images: 85.07%
# [29, 30] loss: 0.180
# [29, 60] loss: 0.149
# [29, 90] loss: 0.153
# [29, 120] loss: 0.154
# [29, 150] loss: 0.169
# [29, 180] loss: 0.167
# Accuracy of the network on the 10000 test images: 84.50%
# ...
# [39, 30] loss: 0.051
# [39, 60] loss: 0.056
# [39, 90] loss: 0.048
# [39, 120] loss: 0.057
# [39, 150] loss: 0.057
# [39, 180] loss: 0.064
# Accuracy of the network on the 10000 test images: 85.56%
# [40, 30] loss: 0.066
# [40, 60] loss: 0.058
# [40, 90] loss: 0.054
# [40, 120] loss: 0.065
# [40, 150] loss: 0.063
# [40, 180] loss: 0.064
# Accuracy of the network on the 10000 test images: 85.76%

Warning

UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate warnings.warn(“Detected call of lr_scheduler.step() before optimizer.step(). “

해결법

  • lr_scheduler.step()optimizer.step() 전에 호출했기 때문에 발생
  • PyTorch 1.1.0 이후로는 optimizer.step()을 먼저 호출한 다음 lr_scheduler.step()을 호출해야 한다
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
for epoch in range(epochs):
    running_loss = 0.0
    # lr_sche.step()
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()
        outputs = resnet50(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 30 == 29:
            value_tracker(loss_plt, torch.Tensor([running_loss / 30]), torch.Tensor([i + epoch * len(trainloader)]))
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 30:.3f}')
            running_loss = 0.0
            
    lr_sche.step()
    acc = acc_check(resnet50, testloader, epoch, save=1)
    value_tracker(acc_plt, torch.Tensor([acc]), torch.Tensor([epoch]))
This post is licensed under CC BY 4.0 by the author.